Available online at www.sciencedirect.com Journal of Fluorine Chemistry 120 (2003) 93-96 www.elsevier.com/locate/jfluchem # Short communication # Reactions of highly branched fluoroolefins with methyllithium and methylmagnesium bromide: formations of unexpected polyfluorocyclobutene and polyfluoropentadiene compounds Masakazu Nishida*, Taizo Ono Molecular Structure Design Group, Institute for Structural and Engineering Materials, National Institutes of Advanced Industrial Science and Technology (AIST), 2266-98 Shimoshidami, Moriyama-ku, Nagoya 463-8560, Japan Received 7 October 2002; received in revised form 7 November 2002; accepted 16 November 2002 ### Abstract Introduction of a methyl group into hexafluoropropene trimers was achieved by reactions with organometallic carbon nucleophiles. Unusual cyclization and defluorination occurred simultaneously with a formation of methylated polyfluoroolefins: excess methyllithium provided a polyfluorocyclobutene compound, while a polyfluoropentadiene derivative was formed by use of excess methyllithium. © 2002 Elsevier Science B.V. All rights reserved. Keywords: Hexafluoropropene trimer; Organolithium reagent; Grignard reagent; Cyclization; Defluorination Hexafluoropropene oligomers, available from a hexafluoropropene monomer [1], have been used as synthetic intermediates for various industrially manufactured goods, viz. surfactants, liquid crystals and inert fluids. Hexafluoropropene trimers, especially, have interesting reactivities, such as forming persistent perfluoroalkyl radicals [2,3], due to their highly branched frameworks with electronegative bulky substituents. Several reactions of hexafluoropropene oligomers with nucleophilic reagents have been reported [4–6], however, with regard to the reaction with organometallic nucleophiles, only one report has been published about the reactions of hexafluoropropene dimers with organomagnesium and organolithium reagents [7]. Now we wish to report reactions of hexafluoropropene trimers with oraganometallic nucleophiles with an emphasis on the unusual cyclization and defluorination reactions. Highly branched hexafluoropropene trimers, perfluoro-(4-methyl-3-isopropyl-2-pentene) (**T-2**) and perfluoro-(3-ethyl-2,4-dimethyl-2-pentene) (**T-3**), were prepared by oligomerization of a hexafluoropropene monomer under the presence of a fluoride anion and a crown ether [8]. The reactions of trimers, **T-2** and **T-3**, with organometallic nucleophiles, CH₃Li-LiBr and CH₃MgBr, were carried out in anhydrous ether at $0\,^{\circ}\text{C}$ for 5 h (Schemes 1 and 2). A typical procedure for the reactions of hexafluoropropene trimers with organometallic nucleophiles is as follows. To a suspension of perfluoro-(3-ethyl-2,4-dimethyl-2-pentene) (T-3, 0.453 g, 1.0 mmol) in 5 ml of ether, was dropped an ethereal solution of CH₃Li-LiBr (1.5 M, 2.4 ml) cooled with ice. After stirring for 5 h at 0 °C, a resulting white suspension was heated to 50 °C and was trap-to-trap distilled with a vacuum line system (1 mmHg). Crude products (0.469 g) were obtained by repetitive distillation and the product distribution was determined by ¹⁹F and ¹H NMR. All samples used for analysis were purified by a preparative GC and were identified by FT-IR, GC, GC-MS, ¹H, ¹³C, and ¹⁹F NMR. The results on the reaction of **T-2** and T-3 with CH₃Li and CH₃MgBr were summarized in Table 1. Reactions of **T-3** with CH₃Li or with CH₃MgBr provided two structural isomers of mono-methylated compounds (**1** and **2**) in moderate to good yields (entries 1 and 4). Likewise with **T-2**, either CH₃Li or CH₃MgBr provided mono-methylated compounds **7** and **8** in moderate yields (entries 8 and 11). Interestingly, an excess use of oraganometallic nucleophiles provided unexpected products (**5**, **6** and **9**) in addition to the normal adducts such as bis-methylated fluoroolefins (**3** and **4**) and/or a tris-methylated fluoroolefin (**10**): either ^{*} Corresponding author. Tel.: +81-52-736-7329; fax: +81-52-736-7406. E-mail address: m-nishida@aist.go.jp (M. Nishida). Scheme 1. Reagents and conditions: (i) CH₃Li or CH₃MgBr; (ii) excess of CH₃Li or CH₃MgBr. Scheme 2. Reagents and conditions: (i) CH₃Li or CH₃MgBr; (ii) excess of CH₃Li or CH₃MgBr. Table 1 Reactions of hexafluoropropene trimers T-3 and T-2 with organometallic nucleophiles | Entry | Trimers (mmol) | Nucleophiles (mmol) | Products (percentage yield) ^a | | | Recovery of | |------------------|------------------|----------------------------|---|-------------------------------------|--------------------------------|-------------| | | | | Mono-CH ₃ | Bis- and tris-CH ₃ | Others | trimers (%) | | 1 | T-3 (1.9) | CH ₃ Li (2.3) | (E)-1 (30), (Z)-1 (36), 2 (12) | (Z)- 3 (6.3), 4 (2.9) | | 11 | | 2 | T-3 (1.9) | CH ₃ Li (4.8) | (<i>E</i>)- 1 (4.6), (<i>Z</i>)- 1 (35), 2 (1.9) | (Z)- 3 (31), 4 (14) | 5 (6.2) | 0 | | 3 | T-3 (1.0) | CH ₃ Li (3.6) | (Z)- 1 (24) | (Z)- 3 (30), 4 (16) | 5 (29) | 0 | | 4 | T-3 (1.9) | CH ₃ MgBr (1.2) | (E)-1 (28), (Z)-1 (11), 2 (23) | | | 31 | | 5 | T-3 (1.5) | CH_3MgBr (2.0) | (<i>E</i>)- 1 (40), (<i>Z</i>)- 1 (12), 2 (15) | | 6 (26) | 0 | | 6 | T-3 (1.5) | CH ₃ MgBr (3.8) | (E)- 1 (31), (Z)- 1 (10), 2 (11) | | 6 (32) | 0 | | 7 ^{b,c} | T-3 (1.0) | CH ₃ MgBr (3.6) | (<i>E</i>)- 1 (8.5), (<i>Z</i>)- 1 (5.5) | (Z)- 3 (11) | 5 (10), 6 (20) | 0 | | 8 | T-2 (1.9) | CH ₃ Li (2.3) | 7 (47), 8 (20) | (Z)- 3 (2.6) | 5 (1.1) | 0 | | 9 | T-2 (1.9) | CH ₃ Li (4.8) | 7 (25), 8 (11) | (Z)- 3 (4.9) | 5 (27) | 0 | | 10 ^b | T-2 (1.0) | CH ₃ Li (3.6) | 7 (5.3) | 10 (17) | 5 (49) | 0 | | 11 | T-2 (1.5) | CH ₃ MgBr (1.8) | 7 (22), 8 (40) | | 9 (9.2) | 0 | | 12 | T-2 (1.5) | CH ₃ MgBr (4.8) | 7 (32), 8 (39) | | 5 (1.2), 9 (7.8) | 0 | ^a Determined by ¹⁹F and ¹H NMR otherwise noted. reaction of **T-3** and **T-2** with a 3.6 molar excess of CH₃Li (entries 3 and 10) gave a polyfluorocyclobutene derivative **5** in 29 and 49% yields, respectively. Spectral data for **5** are— 1 H NMR (CDCl₃, 300 MHz) δ : 1.71 (br s, 3H, CH₃), 2.93 (br s, 2H, –CH₂–); 13 C NMR (CDCl₃, 75 MHz) δ : 13.4 (q, J_{CH} 134.0, (CF₃)₂(CH₃)C), 30.8 (t, J_{CH} 148.5, CH₂), 53.1 (sep, $J_{\rm CF}$ 28.6, (CF₃)₂(CH₃)C), 55.7 (sep t, $J_{\rm CF}$ 31.2, $J_{\rm CH}$ 4.5, (CF₃)₂C), 117.6 (q, $J_{\rm CF}$ 272.4, CF₃), 122.5 (q, $J_{\rm CF}$ 282.5, (CF₃)₂C), 122.8 (q, $J_{\rm CF}$ 286.1, (CF₃)₂(CH₃)C), 133.0 (m, C=C-C(CF₃)₂(CH₃)), 147.1 (qt, $J_{\rm CF}$ 41.8, $J_{\rm CH}$ 7.6, =C-CF₃); ¹⁹F NMR (CDCl₃, 282 MHz, CFCl₃ as an internal standard) δ: -64.9 (sep, $J_{\rm FF}$ 9.3, 3F, CF₃), -68.7 (s, 6F, (CF₃)₂), -70.9 (q, $J_{\rm FF}$ 9.3, 6F, (CF₃)₂(CH₃)C); GC-MS (EI, 70 eV) m/z: 422 (M^+ , 5.8), 403 (M^+ – F, 5.0), 383 (5.2), 353 (13), 333 (31), 313 (16), 263 (10), 145 (62), 69 (100), 65 (31), 51 (26); IR (cm⁻¹): 1477 ($v_{\rm C=C}$). In contrast, excess amounts of CH₃MgBr reacted with **T-3** to give a polyfluor-obutadiene compound **6** in 20–32% yields (entries 5–7; see ^b Determined by GC ^c Several high-boiling products were also obtained. ¹These yields are determined by ¹⁹F and ¹H NMR. The isolation of **5** and **6** in pure form was difficult because of very close boiling points to methylated fluoroolefins. Both **5** and **6** were separable only with a preparative GC: an isolated yield of **5** was about 10–15%, while that of **6** was below 5% because (*E*)- and (*Z*)-**1** have very close retention times. Scheme 3. footnote 1). Spectral data for **6** are— 1 H NMR (CDCl₃, 300 MHz) δ : 1.67 (s); 13 C NMR (CDCl₃, 75 MHz) δ : 15.7 $\begin{array}{l} (\mathsf{q}, J_{\mathrm{CH}} \, 133.42, (\mathsf{CF}_3)_2(C\mathsf{H}_3)\mathsf{C}), \, 55.2 \, (\mathsf{m}, \, (\mathsf{CF}_3)_2(\mathsf{CH}_3)C), \, 82.4 \\ (\mathsf{m}, \, \, \mathsf{CF}_3C=\mathsf{CF}_2), \quad 105.8 \quad (\mathsf{dqm}, \, \, J_{\mathrm{CF}} \, \, 19.6, \, \, J_{\mathrm{CH}} \, \, \, 5.1, \\ (\mathsf{CF}_3)\mathsf{FC}=C), \quad 117.5 \quad (\mathsf{qd}, \, \, J_{\mathrm{CF}} \, \, 276.5, \, \, 40.8, \, \, (C\mathsf{F}_3)\mathsf{FC}=\mathsf{C}), \\ 121.2 \, (\mathsf{qm}, \, J_{\mathrm{CF}} \, 271.15, \, C\mathsf{F}_3\mathsf{C}=\mathsf{CF}_2), \, 123.5 \, (\mathsf{qq}, \, J_{\mathrm{CF}} \, 291.1, \\ 3.9, \, (C\mathsf{F}_3)_2(\mathsf{CH}_3)\mathsf{C}), \, 153.4 \, (\mathsf{dq}, \, J_{\mathrm{CF}} \, 220.5, \, 43.4, \, (\mathsf{CF}_3)\mathsf{FC}=\mathsf{C}), \end{array}$ 158.0 (dd, J_{CF} 181.8, 169.6, $\text{CF}_3\text{C}=\text{CF}_2$); ¹⁹F NMR (CDCl₃, 282 MHz, CFCl₃ as an internal standard) δ : -58.8 (s, 3F, (CF₃)FC=C), -66.5 (qd, J_{FF} 11.7, 9.9, 1F, CF₃C=CF₂), -67.4 (q, J_{FF} 4.0, 3F, CF₃C=CF₂), -67.6 (m, 1F, CF₃C=CF₂), -68.7 (d, J_{FF} 23.1, 3F, (CF₃)(CF₃)(CH₃)C), -69.9 (dqd, J_{FF} 23.1, 9.9, 9.9, 3F, (CF₃)(CF₃)(CH₃)C), -92.8 (sep, J_{FF} 23.1, 1F, (CF₃)FC=C); GC-MS (EI, 70 eV) m/z: 408 (M^+ , 11), 389 (M^+ - F, 6.4), 339 (13), 243 (12), 69 (100), 65 (18), 51 (18); IR (cm⁻¹): 1736, 1670 ($v_{C=C}$). (100), 65 (18), 51 (18); IR (cm⁻¹): 1736, 1670 ($v_{C=C}$). Polyfluorocyclobutene **5** and polyfluorobutadiene **6** were thermally stable and could be handled in the air. No methanol-insoluble polymers were obtained in the reactions with CH₃Li or with CH₃MgBr. Formation of methyl adducts, 1-4, 7, 8 and 10, was explained by the well-established addition-elimination mechanism (Ad_N-E) [9,10], while polyfluorocyclobutene 5 and polyfluoropentadiene 6 could not be explained by such a mechanism. Probable pathways for the formation of 5 were presented in Scheme 3. The cyclized product 5 was commonly seen in the reaction of T-2 and T-3 with excess CH₃Li. Two reaction intermediates, 11 (path A) and 12 (paths B and C), are conceivable for the last cyclization step (Scheme 3). If the path A is the case, a rather unusual intramolecular S_N2 mechanism should be followed. However, the same kind of mechanism was previously reported by Chambers et al. on the cyclization reaction of perfluoro-3,4-dimethylhexa-3-ene [11]. Although the ring size is different, four-membered in our case and five-membered in the Chambers et al.'s case, there is a common feature, that is, a very congested perfluoro-system into which an incipient anionic nucleophile is compressed by the large steric strain energy. If the path B is taken, the thermally prohibited 2+2 cyclo-addition should be followed. However, it is well known that such a 2+2 cyclization proceeds in the perfluoro-system as is exemplified in the 2+2 cyclo-dimerization of tetrafluoroethylene. Therefore, the path B cannot be discarded. Moreover, changes of the product distribution on 7 and 5 (yields of 5 increased with the decrease of the yields of 7) found in entries 8-10 support the existence of path C that passes through 13. All other characterized products 1, 3, 7 and 8 are reasonably explained as is illustrated in the Scheme 3. In contrast with CH₃Li, an excess use of CH₃MgBr caused one more unusual product **6** of which structure was confirmed by ¹H, ¹⁹F, and ¹³C NMR and GC–MS. Since pentadiene **6** was only detected by the reactions of **T-3** with CH₃MgBr, a tentative formation mechanism involving **2** (available only from **T-3**) was presented in Scheme **4**. Less reactive CH₃MgBr is likely to attack the terminal allylic CF₃ $$F_{3}C \xrightarrow{CF_{3}} CF_{3}$$ $$F_{3}C \xrightarrow{F_{3}} \xrightarrow{F_{3}$$ Scheme 4. group instead of the double bond of **2**, leading to the intermediate **14**, and then the diene structure **6** through the subsequent defluorination. Although the C–F activation promoted by magnesium [12,13] and zinc [14] metals has been reported recently, this defluorination promoted by a Grignard reagent has no precedent to the best of our knowledge. It is just our surprise to find that such a reactive diene **6** survived throughout the reaction under the presence of a Grignard reagent. More detailed studies about cyclization and defluorination and about the differences between CH₃Li and CH₃MgBr are under way. ## References - R.D. Dresdner, F.N. Tlumac, J.A. Young, J. Org. Chem. 30 (1965) 3524–3527. - [2] K.V. Scherer, T. Ono, K. Yamanouchi, R. Fernandez, P. Henderson, J. Am. Chem. Soc. 107 (1985) 718–719. - [3] T. Ono, H. Fukaya, M. Nishida, N. Terasawa, T. Abe, Chem. Commun. (1996) 1579–1580. - [4] K.N. Makarov, L.L. Gervuts, Y.A. Cheburkov, I.L. Knunyants, J. Fluorine Chem. 10 (1977) 323–327. - [5] K.N. Makarov, E.E. Nikolaeva, V.F. Snegirev, J. Fluorine Chem. 48 (1990) 133–143. - [6] D.P. Del'tsova, L.L. Gervits, A.A. Kadyrov, J. Fluorine Chem. 79 (1996) 97–102. - [7] N. Ishikawa, S. Butler, M. Maruta, Bull. Chem. Soc. Jpn. 54 (1981) 3084–3087. - [8] W. Dmowski, W.T. Flowers, R.N. Haszeldine, J. Fluorine Chem. 9 (1977) 94–95. - [9] M. Nishida, T. Ono, T. Abe, J. Fluorine Chem. 110 (2001) 63-73. - [10] M. Nishida, T. Ono, T. Abe, Nippon Kagaku Kaishi J. Chem. Soc. Jpn. (2000) 817–820. - [11] R.D. Chambers, A.A. Lindley, P.D. Philpot, H.C. Fielding, J. Hutchinson, G. Whittaker, J. Chem. Soc., Perkin Trans. 1 (1979) 214–219. - [12] H. Amii, T. Kobayashi, K. Uneyama, Chem. Commun. (1999) 1323– 1324. - [13] K. Uneyama, H. Amii, J. Fluorine Chem. 114 (2002) 127-131. - [14] J. Burdeniuc, R.H. Crabtree, J. Am. Chem. Soc. 118 (1996) 2525–2526.